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A model for the dissolution of a bubble in blood is presented in this paper. The gas inside the bubble is
oxygen and the collapse of the bubble is controlled by the diffusion of the gas from the bubble surface
into the surrounding blood. The diffusion is facilitated by the oxygen uptake reaction between the dis-
solved gas and the hemoglobin, which is described using the Hill saturation curve. The model consists
of a system of coupled differential equations describing the related mass transfer physics in an expanding
computational domain, which follows the moving interface between the shrinking bubble and the sur-
rounding blood. The main findings regarding the important collapse time of microbubbles in blood indi-
cate that this time may vary from 10 s to 2 or 3 h depending on the size of the bubbles and on the
parameters which specify the blood conditions.

� 2009 Elsevier Ltd. All rights reserved.
1. Introduction

Gas bubbles can form in the blood stream as a result of the spe-
cific physiological conditions or therapeutic and surgical interven-
tions. Examples of physiological conditions include the
decompression sickness of divers and the generation of microbub-
bles by mechanical prosthetic heart valves. Gas bubbles may also
appear during non-invasive lithotripter procedures to eliminate
kidney stones. Micron-size bubbles are often used as ultrasound
contrast agents in medical imaging. Microbubbles originated in a
cardiopulmonary bypass or in other extracorporeal tubing can be
infused into blood circulation during invasive procedures or
hemodialysis. A classification of gas embolism, procedures and
events generating microbubbles as well as the clinical conse-
quences of circulating microbubbles in blood is presented in
[1,2]. It is known that the presence of a large amount of gas in
the blood circulation results in serious medical complications.
The uncertainty about the fate of the bubbles stipulates extensive
experimental and modeling efforts to develop methods for the con-
trol and management of bubbles in blood circulation [2].

A number of models of dissolving bubbles in a stream of fluid
have been developed to support simulations for different industrial
processes [3–8]. If the chemical reactions are neglected, the models
rely on the Navier–Stokes equations [9–14]. In blood flow, the sim-
ulations describe the bubbles in unsteady flow conditions induced
by ultrasound oscillations [11–13] or cavitation [14]. These simula-
tions assume spherical symmetry and adopt solutions of the
Rayleigh–Plesset equation with its extension which models the
non-Newtonian behavior of blood [11].
ll rights reserved.
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likakos).
If the dynamics of the bubble is induced by the diffusion of gas
from the bubble into blood, the simulations utilize the Epstein–
Plesset model suggested in [15]. An extension of the Epstein–Plesset
model for the simulation of multi-component gas bubbles in blood is
suggested in [16]. If the blood pressure changes rapidly, the Epstein–
Plesset solution is applied together with the Rayleigh–Plesset
equation, which describes the pressure field around the bubble
[17,18].

If the bubble contains oxygen, the diffusion of the gas into blood
is accompanied by the chemical reaction of oxygen with hemoglo-
bin. The hemoglobin combines reversibly with molecular oxygen
and forms oxyhemoglobin. The reaction of oxygen uptake is of cru-
cial importance for oxygen transport in blood circulation. It has
been extensively investigated since the beginning of the previous
century and remains to be the focus of ongoing biochemical stud-
ies. An extensive review of the existing literature devoted to the
chemical reactions between oxygen and hemoglobin is out of scope
of this work. In problems dealing with dissolving bubbles, the reac-
tion of oxygen with hemoglobin is simulated as a simple binding
process with constants defining the kinetic rates of forward and
backward reactions [19,20].

An example of modeling the oxygen uptake as a first-order
chemical reaction is shown in [21]. The calculated lifetime of the
bubbles is of the same order of magnitude as the collapse time
which was observed in the experiments [22]. The same first-order
reaction model is also applied to the analysis of a hemiellipsoidal
bubble in a blood flow [23,24]. The results of the experiments show
that the model underestimates the lifetime of the bubbles in blood.
The deviation is attributed to the over-simplified model of the oxy-
gen uptake reaction. Experimental measurements of oxygen trans-
fer kinetics in blood [25–29] show that the forward and reverse
kinetic rate constants are very sensitive to the chemical reaction
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Nomenclature

Latin symbols
Cb mass fraction of bound oxygen (–)
Cd mass fraction of dissolved oxygen (–)
Ct mass fraction of oxygen in blood (–)
c hemoglobin binding capacity (ml O2)(ml blood)�1

D diffusivity coefficient (m2 s�1)
DF facilitated diffusivity coefficient (m2 s�1)
j mass flux density (kg m�2 s�1)
LD length of the computational domain (m)
n parameter of Hill’s equation (–)
P50 parameter of Hill’s equation (mmHg)
PO2 partial pressure of dissolved oxygen (mmHg)
PR pressure inside the bubble (mmHg)
R,X bubble radius (m) (–)
r,x radial coordinate (m) (–)

S oxygen saturation (–)
t time (s)
Tc collapse time (s)
VO2 volumetric content of oxygen in blood (–)

Greek symbols
a solubility of oxygen (ml O2)(ml blood)�1(mmHg)�1

d domain extension (–)
g radial Landau coordinate (–)
k slope of the saturation curve (–)
qb density of blood (kg m�3)
qSTP density of oxygen under standard conditions (kg m�3)
s dimensionless time (–)
u normalized mass fraction (–)
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parameters of the hemoglobin molecules, the concentration of
erythrocytes blood and to other physiological conditions.

The lifetime of bubbles in blood is usually much smaller than
the half-time of oxygen uptake. The size of bubbles circulating in
blood flow lies within the range of 1–250 lm [17,18,30,31] and
the dissolution times of such bubbles may vary from 1 to 600 s.
If the characteristic time of a process in question differs signifi-
cantly from the half-time of the reaction of oxygen uptake, the
binding of oxygen can be treated as an instant reaction thus avoid-
ing the uncertainty that comes from the choice of the kinetic con-
stants. The separation of slow and fast dynamics of a problem is
widely used in chemical and biochemical engineering [32–34].
The results shown in [35–37] indicate that this approach accu-
rately predicts the concentration of oxygen in the blood–gas ex-
change devices [35–37].

The objective of the present work is to support the development
of medical procedures and biomedical devices requiring the under-
standing of the physics and the control of the dynamics of micro-
bubbles in blood circulation. The goal of the model herein is to
analyze the dynamics of the diffusion-induced collapse of bubbles
of oxygen in blood. The simulations employ a ‘‘facilitated” diffusion
model. Unlike earlier simulations of bubbles in blood, the present
model accounts for oxygen–hemoglobin interaction which has
been shown to be important in experiments. The results of the sim-
ulations provide us with an insight into the oxygen transport in
blood, caused by the dissolution of microbubbles.

2. Governing equations

In the presented model, the bubble is assumed to be spherical
and surrounded by blood at rest. Inertial and temperature effects
within the bubble and in the blood are neglected due to the rela-
tively small size of the simulated bubbles. The gas in the bubble
is oxygen, which is modeled as an inviscid ideal gas. The pressure
within the bubble is assumed to be spatially uniform. Earlier sim-
ulations [15,21] of microbubbles dissolving in water and in blood
indicate that the effect of surface tension decreases the collapse
time by less than 3%. Therefore, the surface tension is not modeled
in the present simulations, and it is assumed that the gas pressure
within the bubble does not change over time. The last assumption
implies that the dynamics of the surface of the bubble is controlled
solely by the diffusion of gas through the interface into the blood.
To this end, the model is limited to cases where dissolved gases
other than oxygen do not significantly affect the dynamics of the
bubble collapse.
The oxygen in the blood includes the physically dissolved oxy-
gen and the hemoglobin bound oxygen inside red blood cells. The
mass diffusion of the dissolved oxygen is governed by Fick’s law
with a constant diffusivity coefficient D. It is also assumed that
the concentration of the dissolved oxygen at the gas–blood inter-
face is governed by Henry’s law with a constant solubility a. The
hemoglobin bound oxygen is assumed to be in equilibrium with
the dissolved oxygen. The degree of oxygen bound to hemoglobin
in the blood is expressed using the Hill equation as the oxygen sat-
uration S [19]:

SðPO2 Þ ¼
ðPO2=P50Þn

1þ ðPO2=P50Þn
; ð1Þ

where PO2 is the partial pressure of the dissolved oxygen. Both P50

and n are constant parameters that depend on the physiological
conditions of the blood and are usually derived from fitting exper-
imental data. The total volumetric content of oxygen in blood VO2 is
usually calculated as a sum of the concentrations of free physically
dissolved oxygen and oxygen bound to hemoglobin as follows:

VO2 ¼ aPO2 þ cS; ð2Þ

where c = 0.166 (ml O2)(ml blood)�1 and a = 0.3 (ml O2)(ml blood)�1

(mmHg)�1 are the hemoglobin binding capacity and the physical sol-
ubility of oxygen, respectively [37]. The density of oxygen dissolved
in blood is much less than the density of blood thus the total mass
fraction Ct of oxygen in blood can be calculated as follows:

Ct ¼
qSTP

qb
VO2 ¼

qSTP

qb
ðaPO2 þ cSÞ ¼ Cd þ Cb; ð3Þ

where qSTP is the density of oxygen under standard conditions of
atmospheric pressure and temperature of 273 K, qb is the density
of blood, and Cd = (qSTP/qb)aPO2, Cb = (qSTP/qb)cS denote the mass
fractions of dissolved and bound oxygen, respectively.

Under normal physiological conditions, the molecules of bound
oxygen are attached to the hemoglobin of the red blood cells (RBC),
which have a diameter of about 10 lm. The diffusivity coefficient
of the cells in blood is much lower than the diffusivity of the
molecular dissolved oxygen. Thus in a control volume of blood,
the diffusive fluxes of bound oxygen can be neglected compared
to the fluxes of dissolved oxygen. The diffusion equation for total
mass fraction of oxygen in blood can be written as follows:

@Ct

@t
¼ DDCd: ð4Þ

The substitution of (3) into (4) yields:
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@Cd

@t
þ c

qSTP

qb

@S
@t
¼ DDCd: ð5Þ

If the saturation S defined by (1) is written as a function of the con-
centration of dissolved oxygen utilizing the Henry’s law, Eq. (5)
becomes:

@Cd

@t
þ c

qSTP

qb

dSðCdÞ
dCd

@Cd

@t
¼ DDCd: ð6Þ

The mass balance of dissolved oxygen in a control volume of blood
(6) can be rewritten as an equation with a facilitated diffusivity
coefficient DF:

@Cd

@t
¼ DFDCd; ð7Þ

where DF = D/(1 + k). The slope k of the saturation curve is a func-
tion of the unknown mass fraction of the dissolved oxygen:

k ¼ c
qSTP

qb

n
C50

Cd

C50

� �n�1
,

1þ Cd

C50

� �n� �2

: ð8Þ

The equation for the shrinkage rate of the dissolving bubble is de-
rived from a mass balance of the gas bubble. The mass of oxygen in-
side the bubble changes due to the flux j of gas through the surface
of the bubble:

qSTP
d
dt

4
3
pR3

� �
¼ �4pR2j; ð9Þ

where R is the radius of the bubble. This yields an expression of the
velocity of the interface:

dR
dt
¼ � j

qSTP
: ð10Þ

The flux j at the bubble–blood interface is calculated as follows:

j ¼ �qbD
@Cd

@r

� �
R
; ð11Þ

where the normal derivative is calculated at the bubble surface and
the mass fraction Cd is obtained from the solution of the facilitated
diffusion Eq. (7). A radius–time relation for the dissolving bubbles is
found by solving Eqs. (7), (9), and (11) together with appropriate
boundary and initial conditions.

It is worth pointing out that the flux calculation is based on the
physical diffusivity coefficient while in the facilitated diffusion
equation, the coefficient DF depends on the concentration of oxy-
gen in blood. In the mass balance Eq. (7), the facilitated diffusivity
coefficient combines the mass flux caused by the physical diffusion
and the mass sink (�@Cb/@t) due to the oxygen uptake reaction.
Strictly, Eq. (7) is not the diffusion transport equation with a con-
centration-dependent diffusivity coefficient. On this account a
problem-specific numerical algorithm should be developed for
the solution of this equation.

Simulations of microbubbles in blood reported in the literature
usually employ the Epstein–Plesset model, which assumes a
decoupling of the facilitated diffusion and the bubble radius–time
relation. In the Epstein–Plesset model, the gradient of the concen-
tration of dissolved gas on the shrinking surface of the bubble is
computed based on the solution of the diffusion problem with a
prescribed non-moving boundary. This gradient is then substi-
tuted into the equation for the radius–time relation. Compared
to Epstein–Plesset, the present simulations utilize a numerical
solution of the coupled system (7)–(11) where the shrinking of
the bubble induces a moving boundary problem for Eq. (7). The
obtained solution of the coupled problem allows an analysis of
the assumption of the Epstein–Plesset model for microbubbles
dissolving in blood.
The finite difference method is applied to solve Eqs. (7) and (10)
simultaneously. The detailed description of the development and
application of the algorithm to a multi-component diffusion prob-
lem with spherical symmetry is shown elsewhere [38], and the fol-
lowing section outlines an adaptation of the algorithm to the
problem of a bubble dissolving in blood.

3. Numerical solution

The facilitated diffusion equation is solved in the spherical coor-
dinate system assuming spherical symmetry for the mass fraction
distribution of the dissolved oxygen:

@Cd

@t
¼ DF

2
r
@Cd

@r
þ @

2Cd

@r2

" #
; ð12Þ

where r is the radial coordinate. The following initial and boundary
conditions are imposed at the outer boundary of the computational
domain and at the bubble–liquid interface:

Cdðt ¼ 0Þ ¼ C0 Cdð1; tÞ ¼ C0 CdðR; tÞ ¼ CR: ð13Þ

The mass balance equation for the gas in the bubble is written as
follows:

dR
dt
¼ qb

qSTP

D
1þ k

@Cd

@r

� �
R

: ð14Þ

In order to develop an efficient numerical algorithm, the following
non-dimensional concentration, time and radial coordinate are
introduced:

/ ¼ Cd

C0
s ¼ Dt

R2
0

x ¼ r � R0

R0
: ð15Þ

The solution of the moving boundary problem requires a second
transformation of the variables which is carried out using coordi-
nates introduced by Landau [39]. The Landau coordinates are:

gðx; sÞ ¼ x� XðsÞ
dðsÞ ¼ x� XðsÞ

X1 � XðsÞ ; ð16Þ

where X(s) is the moving non-dimensional position of the bubble–
liquid interface and X1 is the fixed boundary of the computational
domain. In the Landau variables, the facilitated diffusion equation is
written as follows:

@/
@s
¼ A

@/
@g
þ B

@2/
@g2 ; ð17Þ

where the coefficients A and B are defined as:

A ¼ 1
d

2
ð1þ kÞð1þ gdþ XÞ þ ð1� gÞdX

ds

� �
; ð18Þ

B ¼ 1
1þ k

1
d2 : ð19Þ

The mass balance of the gas in the bubble takes the form:

dX
ds
¼ 1
ð1þ kÞ

C0

d
qb

qSTP

@/
@g

� �
g¼0

: ð20Þ

A 2nd order central differencing scheme in space and an implicit
Euler scheme for the temporal discretization are utilized. The dis-
cretized facilitated diffusion equation is written as follows:

/nþ1
i � /n

i

Ds
¼ A

/nþ1
iþ1 � /nþ1

i�1

2Dg
þ B

/nþ1
iþ1 � 2/nþ1

i þ /nþ1
i�1

ðDgÞ2
: ð21Þ

The position of the interface is updated using a 1st order
approximation:

Xnþ1 ¼ Xn þ dX
ds

� �nþ1

ds: ð22Þ



Fig. 2. Temporal evolution of the radius of dissolving bubbles in degassed blood.
Experimental data are obtained from [24]. Numerical values: D = 0.7 �
10�5 cm2 s�1, n = 2.7, P0 = 51 mmHg, pressure in bubble: PR = 760 mmHg. The value
of the initial radius is shown next to the corresponding curve.
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Accurate coupling of the interface velocity (dX/ds) and the gradient
of the concentration at the interface is of crucial importance for the
solution. Once the oxygen bubble at atmospheric pressure is intro-
duced into blood, the concentration of oxygen at the blood–gas
interface is one order of magnitude higher than the concentration
of the dissolved oxygen. This high ratio causes a steep gradient of
the concentration which in turn strongly affects the results of the
computation of the radius–time relation and the collapse time.
For this reason, a 3rd order discretization scheme [40] for the calcu-
lation of the concentration gradient was added to the original algo-
rithm [38]. This insures an accurate approximation of the velocity of
the interface:

dX
ds

� �
¼ 1
ð1þ kÞ

qbC0

qSTP

�/3 þ 6/2 � 3/1 � 2/0

6dDg
: ð23Þ

In Eq. (23) u0 is the dimensionless concentration in a fictitious node,
which is calculated utilizing the finite difference Eq. (21). Prelimin-
ary tests showed that if the value of interface velocity appearing in
the coefficient A of Eq. (21) is computed using the value from the
previous time step, the solution shows spurious oscillations to-
wards the end of the shrinking process. In order to remedy this defi-
ciency, the interface velocity is obtained solving a quadratic
equation, which is derived from (21) and (23) at the boundary of
the domain (see Appendix A for the details).

4. Results and discussion

The profiles of blood saturation around a bubble with initial ra-
dius R = 100 lm is shown in Fig. 1. The following set of model
parameters is chosen for the base case simulation: the pressure
of oxygen inside the bubble is specified to be 760 mmHg and the
initial concentration of oxygen in blood equals 51 mmHg; the
parameters of the Hill’s equation are set to be n = 2.7 and
P50 = 28 mmHg. The diffusivity is assumed to be D = 1.8 �
! 10�5 cm2 s�1 [19]. In this case, neglecting the effect of surface
tension is a reasonable approximation because the increase of
pressure inside the bubble due to surface tension is comparable
with the initial pressure when the radius is about 1 lm, i.e. the size
of the bubble decreases by two orders of magnitude.

In Fig. 1a, the profiles are shown in the Landau coordinates in a
fixed computational domain. The last curve corresponds to the sat-
uration profile at the moment of the bubble collapse. The results
indicate that the saturation front rapidly propagates into blood in
the first 22 s, and then the velocity of the front drops by 3–4 times
Fig. 1. Radial profiles of blood saturation around an oxygen bubble with initial radius of
side the profiles are shown in fixed Landau coordinates (a) whereas the right figure (b)
and slows down until the full dissolution of the bubble. The fast
initial velocity of the oxygenation front is qualitatively similar to
rapid oxygenation of a thin layer of blood adjacent to the bubble
observed in the experiments [22]. The same set of profiles as in
Fig. 1a is illustrated in Fig. 1b in physical coordinates where the left
endpoint of the profile coincides with the instant position of the
interface. As oxygen diffuses into blood, the surface is shrinking to-
wards its center. The shrinking is slightly accelerated over time. At
the moment of collapse, oxygen from the bubble diffuses into a
blood volume which is bounded by a sphere with a radius about
three times greater than the initial radius of the bubble.

The results of earlier experiments [22] are used to validate the
model of bubble dissolution presented in this work. In the experi-
ments, radius–time relations of oxygen bubbles dissolving in de-
gassed blood are recorded for bubbles with radii from 200 to
300 lm. In Fig. 2, the experimental data is compared with the re-
sults of the simulations. The parameters of blood under the condi-
tions of the tests in [22] are not reported. In the simulations, the
value of diffusivity D has been chosen to serve as a fitting param-
eter, while the Hill’s constants are assumed to be the same as for
Fig. 1. The best fit has been found with D = 0.7 � 10�5 cm2 s�1. This
value is in the lower part of the physiological range as reported in
100 lm, D = 1.8 � 10�5 cm2 s�1, n = 2.7, P0 = 51 mmHg, PR = 760 mmHg. On the left
depicts the profile in physical coordinates.
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[24]. The results of the simulations deviate less than 10% from the
data for the bubbles with radii 250 and 300 lm. For the smaller
bubbles, the calculations overestimate the collapse time by about
20%. Two additional factors in addition to the uncertainty regard-
ing the blood parameters could cause this deviation: (1) the bub-
bles in the tests are reported to be non-spherical and are
attached to a wall; (2) the reported value of the initial radius is
not measured directly at the beginning of the experiment but is
extrapolated from the measurements at later times. The overall
agreement of the data and the simulations shows that the pro-
posed model is capable of predicting the radius–time relations
for the dissolving microbubbles.

The collapse time as a function of the initial content of oxygen
in blood is shown in Fig. 3. In the simulations, the initial content of
oxygen in blood is varied within the physiological conditions with
an oxygen partial pressure from 25 to 77 mmHg. For comparison
purposes, the calculated time is plotted together with a test com-
putation where the uptake of oxygen is excluded from the model
and with the results which are obtained using the Epstein–Plesset
model.

In the Epstein–Plesset model, the flux of oxygen from the bub-
ble at a given instance is computed neglecting the movement of
the bubble interface at the same instance. In our simulations, the
interface movement and the diffusion problem are coupled. Thus,
the shrinking of the bubble surface towards its center leads to a
decrease of the gradient of dissolved gas at the liquid side of the
interface. As a consequence the related slow down of the collapse
process is predicted by the present model. The results shown in
Fig. 3 indicate that the quasi-steady approach of the Epstein–
Plesset model leads to a shorter collapse time compared to the
model coupling the calculations of diffusion and radius change.
In the test cases with an initial bubble radius 50 and 500 lm, the
same 8% difference in the simulated collapse times is observed
regardless of the initial concentration of oxygen in blood.

Including the oxygen uptake reaction into the simulations
causes a reduction of the collapse time due to the sink term which
is incorporated into the facilitated diffusion coefficient. The time
decreases by 31% for low initial concentrations of oxygen and by
11% for high concentrations. The impact of the reaction of oxygen
binding is higher at a low oxygen concentration due to the lower
fraction of oxygen bound to hemoglobin. Thus a higher capacity
for the oxygen uptake in the initial phase of the collapse exists.

The curves for different bubbles shown in Fig. 3 are parallel, be-
cause the calculated collapse time is proportional to the second
Fig. 3. Collapse time Tc as a function of the initial content of oxygen for two
different radii, R0 = 500 lm (top) and R0 = 50 lm (bottom); EP denotes the results of
the Epstein–Plesset model.
power of the initial radius R0. Such self-similarity can be obtained
from the dimensional analysis of the parameters of the problem.
The collapse time Tc is a function of the parameters which are trea-
ted as the variables of the function:

Tc ¼ Tcðc;n; P50;a;qSTP;qb; PO2 ; PR;D;R0Þ: ð24Þ

The application of the p-theorem with the last three parameters
chosen to non-dimensionalize the rest of the variables yields to
the following equation:

Tc ¼
R2

D
p c;n;

P50

PR
;aPR;

qSTPD

R2PR

;
qbD

R2PR

;
PO2

PR

� �
; ð25Þ

where p is a non-dimensional function with all arguments of the
function except the last one being constants. Thus, for a given initial
concentration of oxygen in blood, the collapse time is proportional
to the square of the initial radius and inversely proportional to the
diffusivity coefficient.

Different physiological factors including diseases may affect the
ability of blood to diffuse and to bound oxygen. For example, the
diffusivity coefficient D decreases with the increase of concentra-
tion of hemoglobin in RBC [26], and is highly sensitive to the con-
centration of albumin in plasma [19]. The physiological variables
can also trigger a shift in the saturation curve. An increase of the
concentration of dissolved carbon dioxide or temperature requires
a higher concentration of oxygen for a given saturation level. On
the contrary, a rise in pH concentration promotes the steepness
of the saturation curve [19]. The shift of the saturation curve leads
to a change of the fitting coefficients in Hill’s equation.

The impact of various physiological conditions on the collapse
time is illustrated in Fig. 4. The plots show the results of a paramet-
ric study where the values of the diffusivity D and the Hill’s equa-
tion parameter P50 were changed within the physiological ranges
reported in [19,26]. A shift of the saturation curve causes the col-
lapse time to change by approximately 20%, while the decrease
of the diffusivity coefficient results in an almost four times slower
dissolution. The collapse time shown in the upper part of Fig. 4 is
calculated with a constant incremental change of the diffusivity
coefficient. The uneven shift of the corresponding curves points
out that the collapse time is inversely proportional to the diffusiv-
ity coefficient as it follows from the dimensional analysis of the
problem.

The collapse time shown in Figs. 1–4 is calculated assuming that
the oxygen pressure in the bubble is atmospheric. If the bubble is
introduced into the blood stream in cardiopulmonary bypass or as
Fig. 4. Collapse time as a function of the initial content of oxygen for different
physical conditions. The diffusion coefficient (shown next to curve) is varied
between 0.7 � 10�5 cm2 s�1 and 2.1 � 10�5 cm2 s�1 (top). The Hill’s parameter P50

(shown next to curve) is varied between 34 and 28 mmHg (bottom).



Fig. 6. Radius–time relations for a bubble surrounded by multiple bubbles. The
surrounding bubbles are located at distance D from the center of the dissolving
bubble. The initial radius of the bubbles was set to 100 lm and
D = 1.8 � 10�5 cm2 s�1.
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a result of cavitation in an artificial heart, the pressure of oxygen
inside the bubble may differ from the atmospheric pressure. In
the presented model, the pressure inside the bubble is a free
parameter which was varied to estimate the influence of the gas
pressure on the collapse time. In Fig. 5, the curves delineate regions
of the collapse time for the bubbles with an initial radius of 50 and
500 lm. The data is computed for the values of diffusivity D and
the Hill’s parameter P50 which provide the upper and the lower
bounds of the collapse time [19,34]. The simulations show that
smaller bubbles with high oxygen pressure should collapse in
about 10 s. Larger bubbles with low gas pressure may last in blood
for several hours.

In the simulations, the bubble is assumed to be surrounded by a
relatively large volume of blood such that the bubble collapses be-
fore the dissolved oxygen reaches the outer boundary of the simu-
lated blood volume. The profile of the dissolved oxygen at the
collapse moment shown in Fig. 1 indicates that oxygen from a bub-
ble diffuses up to three initial radii from the center of the bubble. If
a second bubble with the same initial radius is located at a distance
less than six radii from the first bubble, the concentration profile of
oxygen should be affected by the interference of the dissolved gas
diffused from the different bubbles. The interference should in-
crease the collapse time due to a higher amount of gas that has
to be absorbed by the same blood volume.

While the analysis of clusters of bubbles is beyond the scope of
the present study, the boundary conditions of the model with a
single bubble can be modified to obtain an estimate of the impact
of multiple bubbles on the collapse time. If two identical bubbles
dissolve simultaneously, the symmetry of the problem implies that
the gradient of the concentration of dissolved gas in the midpoint
between the two bubble centers equals zero. Consequently the dif-
fusion problem for two bubbles can be solved in the semi-space
with Neumann boundary conditions imposed at the plane of sym-
metry. We conducted series of simulations enforcing zero-gradient
conditions at the domain boundary. The calculated collapse time is
shown in Fig. 6 for different lengths LD of the computational do-
main. The simulations may be interpreted as an approximation of
the diffusion problem for a bubble which is surrounded by multi-
ple bubbles of the same size which are equally spaced at the dis-
tance D = 2LD from the center of the bubble.

The radius–time relations shown in Fig. 6 illustrate the increase
of the collapse time due to the shielding effect of the bubbles in the
cluster. If the distance D between the central bubble and the sur-
Fig. 5. Collapse time as a function of oxygen pressure inside the bubble PR for
different physiological conditions: diffusivity coefficient and the Hill’s parameter
P50 are shown next to the corresponding curve.
rounding bubbles decreases below 6 initial radii, the bubble
shrinks only by a fraction and then stabilizes.

The presence of other bubbles is one of several factors which
may affect the accuracy of the prediction of collapse time. To this
end, in blood circulation in the human body bubbles take a more
elongated shape [2]. The change of the shape may cause more than
a 50% increase of the dissolution time as compared with the spher-
ical bubble [1]. When the gas composition is not oxygen, the bub-
ble collapse time may increase as well due to low diffusivity of the
mixture components. A layer of denaturated proteins formed at the
bubble blood interface results in additional slowdown of the disso-
lution [1].

At the late stage of the dissolution, the assumption of a constant
gas pressure in the bubble has to be revised to take the effect of
surface tension into account. Moreover when the bubble radius de-
creases to approximately 10 lm, the bubble becomes comparable
with the size of RBC. In these conditions, the assumption that blood
around the bubble can be modeled as a uniform fluid is not accept-
able any more.

It could be concluded that the presented model is expected to
underestimate the actual life span of the microbubbles in blood.
Nevertheless, the computed collapse time may serve as a viable
estimate of the lower bound of the dissolution time of single
bubbles.

5. Conclusions

The goal of the present work was to simulate the dissolution of
oxygen microbubbles in blood. A model has been developed and
validated using the radius–time relations reported in the literature
for the dissolution of microbubbles.

The results of the simulations have also been used to examine
the quasi-steady assumption of the Epstein–Plesset model, which
is commonly applied in the analysis of the dissolution of bubbles.
The quasi-steady assumption was found to lead to an approxi-
mately 8% shorter collapse time as compared to the presented sim-
ulations where a fully coupled numerical algorithm was
implemented. The simulation of the oxygen uptake reaction results
in a reduction of the collapse time of about 30%, as compared to the
predictions of the Epstein–Plesset model that neglects chemical
reactions.
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A parametric study has been conducted to model the dissolu-
tion of microbubbles under different physiological conditions.
The results showed that the collapse time may vary from 10 s to
2 or 3 h depending on the size of the bubbles and on the parame-
ters which specify the blood conditions.

The limitations of the model have been discussed. It was con-
cluded that the calculated collapse time gives a valuable estimate
of the lower bound of the dissolution time of a spherical bubble
in blood if the collapse is controlled by the facilitated diffusion of
oxygen. Such estimates are useful and alleviate the need for te-
dious experiments in certain situations.

Appendix A

The concentration at the fictitious node can be evaluated from
Eqs. (18) and (19) and the discretized diffusion Eq. (21) as follows:

/0 ¼
� 1

1þk
4

dDg /1 þ 2
ð1þkÞð1þXÞ þ dX

ds

� �
/2 þ 1

1þk
2

dDg /2

2
ð1þkÞð1þXÞ þ dX

ds

� �
� 1

1þk
2

dDg

: ð26Þ

Substituting Eq. (26) into the expression for the velocity, Eq. (23)
yields:

qSTP

qbC0
6dDg

dX
ds

� �

¼
ð�3/1þ4/2�/3ÞdX

dsþð�6/1þ8/2�2/3Þ 1
ð1þkÞð1þXÞþ ð14/1�16/2þ2/3Þ 1

ð1þkÞdDg
dX
dsþ 2

ð1þkÞð1þXÞ� 2
ð1þkÞdDg

:

ð27Þ

After further simplification one obtains the quadratic equation:

dX
ds

� �2

þ D
dX
ds

� �
þ E ¼ 0; ð28Þ

with the coefficients D and E as:

D ¼ 2
1þ k

1
1þ X

� 1
dDg

� �
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qSTP

3/1 � 4/2 þ /3
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The solution of Eq. (28) results in an expression for the velocity of
the interface:

dX
ds

� �
¼ �1

2
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ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
4
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r
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